Jun. 2021

SCB13H1G160DF

1Gbit DDR3 SDRAM EU RoHS Compliant Products

Data Sheet

Rev. A

Revision History				
Date	Revision	Subjects (major changes since last revision)		
2021-06-28	А	Initial Release		

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: <u>info@unisemicon.com</u>

Contents

Сс	ntents	3
1	Features	4
2	Product List	5
3	Ball Configuration	6
4	Ball Description	7
5	Electrical Specifications	9
6	Electrical Characteristics and Recommended A.C. Operating Conditions	11
7	Reference Load for AC Timing and Output Slew Rate	16
8	Package Outlines	17
9	Product Type Nomenclature	18
Lis	t of Figures	19
Lis	t of Tables	20

1 Features

The 1Gbit DDR3 SDRAM offers the following key features:

- JEDEC Standard Compliant
- Power supplies: V_{DD} & V_{DDQ}=+1.35V (1.283V ~ 1.45V)
- Backward compatible to V_{DD} & V_{DDQ}=+1.5V ±0.075V
- Operating temperature range: (Commercial)
 - Normal operating temperature: T_C = 0~85°C
 Extended temperature: T_C = 85~95°C
- Supports JEDEC clock jitter specification
- Fully synchronous operation
- Fast clock rate: 667/800/933MHz
- Differential Clock, CK & CK#
- Bidirectional differential data strobe
 DQS & DQS#
- 8 internal banks for concurrent operation
- 8n-bit prefetch architecture
- Pipelined internal architecture
- Precharge & active power down
- Programmable Mode & Extended Mode registers

- Additive Latency (AL): 0, CL-1, CL-2
- Programmable Burst lengths: 4, 8
- Burst type: Sequential / Interleave
- Output Driver Impedance Control
- Auto Refresh and Self Refresh
- Average refresh period
 - 8192 cycles/64ms (7.8us at 0°C \leq T_C \leq +85°C)
 - 8192 cycles/32ms (3.9us at +85°C $\leq T_C \leq$ +95°C)
- Write Leveling
- ZQ Calibration
- Dynamic ODT (Rtt_Nom & Rtt_WR)
- RoHS compliant
- 96-ball 7.5 x 13 x 1.0mm FBGA package
 Pb and Halogen Free

2 Product List

 Table 1 shows all possible products within the 1Gbit DDR3 SDRAM component generation.

Table 1 - Ordering Information for 1Gbit DDR3 Component

UnilC Part Number	Max. Clock frequency	CAS-RCD-RP latencies	Speed Sort Name	Package		
1Gbit DDR3 SDRAM Components						
Commercial Temperature Range (0 °C~ +95 °C)						
SCB13H1G160DF-11M	933 MHz	13-13-13	DDR3-1866M	PG-FBGA-96		

3 Ball Configuration

Figure 1 - Ball out for 64 Mb ×16 Components (FBGA-96)

4 Ball Description

Table 2 - Input / Output Signal Functional Description

Symbol	Туре	Description
CK, CK#	Input	Differential Clock: CK and CK# are driven by the system clock. All SDRAM input signals are sampled on the crossing of positive edge of CK and negative edge of CK#. Output (Read) data is referenced to the crossings of CK and CK# (both directions of crossing).
CKE	Input	Clock Enable: CKE activates (HIGH) and deactivates (LOW) the CK signal. If CKE goes LOW synchronously with clock, the internal clock is suspended from the next clock cycle and the state of output and burst address is frozen as long as the CKE remains LOW. When all banks are in the idle state, deactivating the clock controls the entry to the Power Down and Self Refresh modes.
BA0-BA2	Input	Bank Address: BA0-BA2 define to which bank the BankActivate, Read, Write, or Bank Precharge command is being applied.
A0-A12	Input	Address Inputs: A0-A12 is sampled during row address (A0-A12) for Active commands and the column address (A0-A9) for Read/Write commands to select one location out of the memory array in the respective bank. (A10/AP and A12/BC# have additional functions). The address inputs also provide the op-code during Mode Register Set commands.
A10/AP	Input	Auto-Precharge: A10 is sampled during Read/Write commands to determine whether Autoprecharge should be performed to the accessed bank after the Read/Write operation. (HIGH: Autoprecharge; LOW: no Autoprecharge). A10 is sampled during a Precharge command to determine whether the Precharge applies to one bank (A10 LOW) or all banks (A10 HIGH).
A12/BC#	Input	Burst Chop: A12/BC# is sampled during Read and Write commands to determine if burst chop (on the fly) will be performed. (HIGH - no burst chop; LOW - burst chopped).
CS#	Input	Chip Select: CS# enables (sampled LOW) and disables (sampled HIGH) the command decoder. All commands are masked when CS# is sampled HIGH. It is considered part of the command code.
RAS#	Input	Row Address Strobe: The RAS# signal defines the operation commands in conjunction with the CAS# and WE# signals and is latched at the crossing of positive edges of CK and negative edge of CK#. When RAS# and CS# are asserted "LOW" and CAS# is asserted "HIGH" either the BankActivate command or the Precharge command is selected by the WE# signal. When the WE# is asserted "HIGH" the BankActivate command is selected and the bank designated by BA is turned on to the active state. When the WE# is asserted "LOW" the Precharge command is selected and the bank designated by BA is turned on to the active state. When the WE# is asserted "LOW" the Precharge command is selected and the bank designated by BA is switched to the idle state after the precharge operation.
CAS#	Input	Column Address Strobe: The CAS# signal defines the operation commands in conjunction with the RAS# and WE# signals and is latched at the crossing of positive edges of CK and negative edge of CK#. When RAS# is held "HIGH" and CS# is asserted "LOW" the column access is started by asserting CAS# "LOW". Then, the Read or Write command is selected by asserting WE# "HIGH" or "LOW".
WE#	Input	Write Enable: The WE# signal defines the operation commands in conjunction with the RAS# and CAS# signals and is latched at the crossing of positive edges of CK and negative edge of CK#. The WE# input is used to select the BankActivate or Precharge command and Read or Write command.

Symbol	Туре	Description
LDQS, LDQS# UDQS UDQS#	Input / Output	Bidirectional Data Strobe: Specifies timing for Input and Output data. Read Data Strobe is edge triggered. Write Data Strobe provides a setup and hold time for data and DQM. LDQS is for DQ0~7, UDQS is for DQ8~15. The data strobes LDOS and UDQS are paired with LDQS# and UDQS# to provide differential pair signaling to the system during both reads and writes.
LDM, UDM	Input	Data Input Mask: Input data is masked when DM is sampled HIGH during a write cycle. LDM masks DQ0-DQ7, UDM masks DQ8-DQ15.
DQ0-DQ15	Input / Output	Data I/O: The DQ0-DQ15 input and output data are synchronized with positive and negative edges of DQS and DQS#. The I/Os are byte-maskable during Writes.
ODT	Input	On Die Termination: ODT (registered HIGH) enables termination resistance internal to the DDR3L SDRAM. When enabled, ODT is applied to each DQ, DQS, DQS#. The ODT pin will be ignored if Mode-registers, MR1and MR2, are programmed to disable RTT.
RESET#	Input	Active Low Asynchronous Reset: Reset is active when RESET# is LOW, and inactive when RESET# is HIGH. RESET# must be HIGH during normal operation. RESET# is a CMOS rail to rail signal with DC high and low at 80% and 20% of VDD.
V _{DD}	Supply	Power Supply: +1.35V -0.067V/+0.1V.
V _{SS}	Supply	Ground
V _{DDQ}	Supply	DQ Power: +1.35V -0.067V/+0.1V.
V _{SSQ}	Supply	DQ Ground
V _{REFCA}	Supply	Reference voltage for CA
V _{REFDQ}	Supply	Reference voltage for DQ
ZQ	Supply	Reference pin for ZQ calibration.
NC	-	No Connect: These pins should be left unconnected.

5 Electrical Specifications

Table 3 - IDD Specification parameters and test conditions (V_{DD} = 1.35V, T_{OPER} = 0~85 °C)

Devenator & Test Condition		1866	Unit
Parameter & lest Condition	Symbol	Мах	
Operating One Bank Active-Precharge Current CKE: High; External clock: On; BL: 8 ¹ ; AL: 0; CS#: High between ACT and PRE; Command, Address, Bank Address Inputs: partially toggling; Data IO: MID-LEVEL; DM:stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,;Output Buffer and RTT: Enabled in Mode Registers ^{*2} ; ODT Signal: stable at 0.	I _{DD0}	68	mA
Operating One Bank Active-Read-Precharge Current CKE: High; External clock: On; BL: 8 ^{*1, 5} ; AL:0; CS#: High between ACT, RDand PRE; Command, Address, Bank Address Inputs, Data IO: partially toggling; DM:stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,; Output Buffer and RTT: Enabled in Mode Registers ^{*2} ; ODT Signal: stable at 0.	I _{DD1}	88	mA
Precharge Standby Current CKE: High; External clock: On; BL: 8 ^{*1} ; AL: 0; CS#: stable at 1; Command, Address, Bank Address Inputs: partially toggling; Data IO: MID-LEVEL; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers ^{*2} ; ODT Signal: stable at 0.	I _{DD2N}	45	mA
Precharge Power-Down Current Slow Exit CKE: Low; External clock: On; BL: 8 ⁻¹ ; AL: 0; CS#: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: MID-LEVEL; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers ¹² ; ODT Signal: stable at 0; Precharge Power Down Mode: Slow Exit. ³	I _{DD2P0}	15	mA
Precharge Power-Down Current Fast Exit CKE: Low; External clock: On; BL: 8 ^{*1} ; AL: 0; CS#: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: MID-LEVEL; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers ^{*2} ; ODT Signal: stable at 0; Precharge Power Down Mode: Fast Exit. ^{*3}	I _{DD2P1}	25	mA
Precharge Quiet Standby Current CKE: High; External clock: On; BL: 8 ^{*1} ; AL: 0; CS#: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: MID-LEVEL; DM:stable at 0;Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers ^{*2} ; ODT Signal: stable at 0.	I _{DD2Q}	40	mA
Active Standby Current CKE: High; External clock: On; BL: 8 ^{*1} ; AL: 0; CS#: stable at 1; Command, Address, Bank Address Inputs: partially toggling; Data IO: MID-LEVEL; DM:stable at 0;Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers ^{*2} ; ODT Signal: stable at 0.	I _{DD3N}	53	mA
Active Power-Down Current CKE: Low; External clock: On; BL: 8 ^{*1} ; AL: 0; CS#: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: MID-LEVEL; DM:stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers ^{*2} ; ODT Signal: stable at 0	I _{DD3P}	28	mA
Operating Burst Read Current CKE: High; External clock: On; BL: 8 ^{*1, 5} ; AL: 0; CS# : High between RD; Command, Address, Bank Address Inputs: partially toggling; DM :stable at 0; Bank Activity: all banks open, RD commands cycling through banks: 0,0,1,1,2,2,; output Buffer and RTT: Enabled in Mode Registers ^{*2} ; ODT Signal: stable at 0.	I _{DD4R}	155	mA

Beremeter & Test Condition	Cumpleal	1866	Unit	
Parameter & Test Condition	Max			
Operating Burst Write Current CKE: High; External clock: On; BL: 8 ^{*1} ; AL: 0; CS# : High between WR; Command, Address, Bank Address Inputs: partially toggling; DM : stable at 0; Bank Activity: all banks open. Output Buffer and RTT: Enabled in Mode Registers ^{*2} ; ODT Signal: stable at HIGH.			170	mA
Burst Refresh Current CKE: High; External clock: On; BL: 8 ^{*1} ; AL: 0; CS#: High between t Command, Address, Bank Address Inputs: partially toggling; Data DM:stable at 0; Bank Activity: REF command every tRFC; Output E Enabled in Mode Registers ^{*2} ; ODT Signal: stable at 0.	I _{DD5B}	100	mA	
Self Refresh Current: Self-Refresh Temperature Range (SRT): Normal ⁴ ; CKE: Low; External clock: Off; CK and CK#: LOW; BL: 8^{*1} ; AL: 0; CS#,			15	mA
DM:stable at 0; Bank Activity: Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers ^{*2} ; ODT Signal: MID- LEVEL	<i>T</i> case: 0 - 95°C	I _{DD6ET}	20	mA
Operating Bank Interleave Read Current CKE: High; External clock: On; BL: 8 ^{*1, 5} ; AL: CL-1; CS#: High betw Command, Address, Bank Address Inputs: partially toggling; DM:s Buffer and RTT: Enabled in Mode Registers ^{*2} ; ODT Signal: stable a	I _{DD7}	256	mA	
RESET Low Current RESET: LOW; External clock: Off; CK and CK#: LOW; CKE: FLOA Command, Address, Bank Address, Data IO: FLOATING; ODT Sig RESET Low current reading is valid once power is stable and RESET at least 1ms.	I _{DD8}	10	mA	

Note 1. Burst Length: BL8 fixed by MRS: set MR0 A[1,0]=00B.

Note 2. Output Buffer Enable: set MR1 A[12] = 0B; set MR1 A[5,1] = 01B; RTT_Nom enable: set MR1 A[9,6,2] = 011B; RTT_Wr enable: set MR2 A[10,9] = 10B.

Note 3. Precharge Power Down Mode: set MR0 A12=0B for Slow Exit or MR0 A12=1B for Fast Exit.

Note 4. Self-Refresh Temperature Range (SRT): set MR2 A7=0B for normal or 1B for extended temperature range.

Note 5. Read Burst Type: Nibble Sequential, set MR0 A[3] = 0B.

Note 6. Supporting 0 - 85 °C with full JEDEC AC & DC specifications. This is the minimum requirements for all operating temperature options. However, for applications operating in Extended Temperature 85°C ~ 95°C, some optional spec are required.

6 Electrical Characteristics and Recommended A.C. Operating Conditions

Cumhal	Parameter			1866		Linit	Nete
Symbol				Min.	Max.	Unit	Note
t _{AA}	Internal read command to first data			13.91	20	ns	
t _{RCD}	ACT to internal read or write delay time	ACT to internal read or write delay time			-	ns	
t _{RP}	PRE command period			13.91	-	ns	
t _{RC}	ACT to ACT or REF command period			47.91	-	ns	
t _{RAS}	ACTIVE to PRECHARGE command pe	riod		34	9 x t _{REFI}	ns	
		CL=5, CW	/L=5	-	-	ns	33
		CL=6, CV	/L=5	2.5	3.3	ns	33
		CL=7, CW	/L=6	1.875	<2.5	ns	33
		CL=8, CV	/L=6	1.875	<2.5	ns	33
t _{CK(avg)}	Average clock period	CL=9, CW	/L=7	1.5	<1.875	ns	33
		CL=10, CV	VL=7	1.5	<1.875	ns	33
		CL=11, CV	VL=8	1.25	<1.5	ns	33
		CL=12, CV	VL=8	1.25	<1.0	ns	33
torran	Minimum Clock Cycle Time (DLL off me	CL=13, CV	VL=9	1.07	<1.25	ne	55
	Average clock HIGH pulse width	iue)		0.47	0.53	113 t	0
tor (avg)	Average Clock I OW pulse width			0.47	0.53	t _{CK}	-
	DOS DOS# to DO skew per group pe	r 200055		0.47	0.55	ICK	
UQSQ	DQS, DQS# 10 DQ skew, per group, per access			-	85	ps	13
t _{QH}	DQ output hold time from DQS, DQS#			0.38	-	t _{CK}	13
t _{LZ(DQ)}	DQ low-impedance time from CK, CK#			-390	195	ps	13,14
t _{HZ(DQ)}	DQ high impedance time from CK, CK#			-	195	ps	13,14
tos(hasa)	Data setup time to DQS, DQS# reference	ced to	AC135	-	-	ps	17
•DS(base)	Vih(ac) / Vil(ac) levels		AC130	70	-	ps	17
t _{DH(base)}	Data hold time from DQS, DQS# referent Vih(dc) / Vil(dc) levels	nced to	DC90	75	-	ps	17
t _{DIPW}	DQ and DM Input pulse width for each i	nput		320	-	ps	
t _{RPRE}	DQS,DQS# differential READ Preamble	9		0.9	-	t _{CK}	13,19
t _{RPST}	DQS, DQS# differential READ Postamb	ole		0.3	-	t _{CK}	11,13
t _{QSH}	DQS, DQS# differential output high time	9		0.4	-	t _{CK}	13
t _{QSL}	DQS, DQS# differential output low time			0.4	-	t _{CK}	13
t _{WPRE}	DQS, DQS# differential WRITE Preamb	ole		0.9	-	t _{CK}	1
t _{WPST}	DQS, DQS# differential WRITE Postamble			0.3	-	t _{CK}	1
t _{DQSCK}	DQS, DQS# rising edge output access time from rising CK. CK#			-195	195	ps	13
t _{LZ(DQS)}	DQS and DQS# low-impedance time (Referenced from RL - 1)			-390	195	ps	13, 14
t _{HZ(DQS)}	DQS and DQS# high-impedance time (I from RL + BL/2)	Referenced		-	195	ps	13, 14
t _{DQSL}	DQS, DQS# differential input low pulse	width		0.45	0.55	t _{ск}	29, 31
t _{DQSH}	DQS, DQS# differential input high pulse	e width		0.45	0.55	t _{ск}	30, 31

Table 4 - Electrical Characteristics and Recommended A.C. Operating Conditions (V_{DD}=1.35V, T_{OPER}=0~85°C)

Cumphed	Peremeter	1866		1 In te	Nata	
Symbol	Parameter	Min.	Max.	Unit	Note	
t _{DQSS}	DQS, DQS# rising edge to CK, CK# rising edge			0.27	t _{ск}	
t _{DSS}	DQS, DQS# falling edge setup time to CK, CK# edge	# rising	0.18	-	t _{CK}	32
t _{DSH}	DQS, DQS# falling edge hold time from CK, Ck edge	K# rising	0.18	-	t _{ск}	32
t _{DLLK}	DLL locking time		512	-	t _{ск}	
t _{RTP}	Internal READ Command to PRECHARGE Cor	mmand delay	max (4tCK, 7.5ns)	_	tCK	
t _{WTR}	Delay from start of internal write transaction to i command	max (4tCK, 7 5ns)	_	tCK	18	
t _{WR}	WRITE recovery time		15	-	ns	18
t _{MRD}	Mode Register Set command cycle time		4	-	tCK	
t _{MOD}	Mode Register Set command update delay		max (12tCK,		tCK	
t _{CCD}	CAS# to CAS# command delay		4	-	tCK	
t _{DAL(min)}	Auto precharge write recovery + prechargetime	;	WR + t _R	þ	t _{ск}	
t _{MPRR}	Multi-Purpose Register Recovery Time		1	-	t _{CK}	22
t _{RRD}	ACTIVE to ACTIVE command period	max (4t _{ск} , 6ns)	-	t _{ск}		
t _{FAW}	Four activate window		35	-	ns	
-	Command and Address setup time to CK.	AC160	-	-	ps	16
t _{IS(base)}	CK# referenced to Vih(ac) / Vil(ac) levels	AC135	65		ps	16,27
		AC125	150	-	ps	16,27
t _{IH(base)}	Command and Address hold time from CK, CK# referenced to Vih(dc) / Vil(dc) levels	DC90	110	-	ps	16
t _{IPW}	Control and Address Input pulse width for each	input	535	-	ps	28
t _{ZQinit}	Power-up and RESET calibration time		512	-	t _{CK}	
t _{ZQoper}	Normal operation Full calibration time		256	-	t _{CK}	
t _{ZQCS}	Normal operation Short calibration time		64	-	t _{CK}	23
t _{XPR}	Exit Reset from CKE HIGH to a valid command	1	max (5t _{СК} , t _{RFC(min)} + 10ns)	-	t _{ск}	
t _{xs}	Exit Self Refresh to commands not requiring a locked DLL		max (5t _{Ск} , t _{RFC(min)} + 10ns)	-	t _{ск}	
t _{XSDLL}	Exit Self Refresh to commands requiring a lock	ed DLL	t _{DLLK(min)}	-	t _{ск}	
t _{CKESR}	Minimum CKE low width for Self Refresh entry timing	$t_{CKE(min)} + 1t_{CK}$	-	t _{ск}		
t _{CKSRE}	Valid Clock Requirement after Self Refresh Ent Power-Down Entry (PDE)	max (5t _{ск} , 10 <u>ns)</u>	-	t _{ск}		
t _{CKSRX}	Valid Clock Requirement before Self Refresh Exit (SRX) or Power-Down Exit (PDX) or Reset	max (5t _{ск} , 10 ns)	-	t _{ск}		
t _{XP}	Exit Power Down with DLL on to any valid compresent of the precharge Power Down with DLL frozen to commands not requiring a locked	mand; Exit d DLL	max (Зt _{ск} , 6 ns)	-	t _{ск}	
t _{XPDLL}	Exit Precharge Power Down with DLL frozen to requiring a lockedDLL	commands	max (10t _{ск} , 24 ns)	-	t _{CK}	2

Querry has l	Barranatan	1866		Unit	Nata	
Symbol	Parameter		Min.	Max.	Unit	Note
t _{CKE}	CKE minimum pulse width	max (3t _{ск} , 5 ns)	-	t _{ск}		
t _{CPDED}	Command pass disable delay		2	-	t _{CK}	
t _{PD}	Power Down Entry to Exit Timing	t _{CKE (min)}	9 x t _{REFI}		15	
t _{ACTPDEN}	Timing of ACT command to Power Down e	1	-	t _{ск}	20	
t _{PRPDEN}	Timing of PRE or PREA command to Powe entry	er Down	1	-	t _{ск}	20
t _{RDPDEN}	Timing of RD/RDA command to Power Down entry		RL+4+1	-	t _{ск}	
t _{WRPDEN}	Timing of WR command to Power Down er BL8MRS, BC4OTF)	ntry (BL8OTF,	WL+4+ (tWR/tCK)	-	tCK	9
t _{WRAPDEN}	Timing of WRA command to Power Down entry (BL8OTF, BL8MRS,BC4OTF)		WL+4+ WR+1	-	tCK	10
t _{WRPDEN}	Timing of WR command to Power Down er	ntry (BC4MRS)	WL+2+ (tWR/tCK)	-	tCK	9
t _{WRAPDEN}	Timing of WRA command to Power Down e	entry (BC4MRS)	WL+2+ WR+1	-	tCK	10
t _{REFPDEN}	Timing of REF command to Power Down e	1	-	tCK	20, 21	
t _{MRSPDEN}	Timing of MRS command to Power Down entry	tMOD(min)	-			
ODTLon	ODT turn on Latency	WL - 2 = C	NL + AL - 2	+		
ODTLoff	ODT turn off Latency	WL - 2 = C\	NL + AL - 2	ICK		
ODTH4	ODT high time without write command or w command and BC4	4	-	t _{CK}		
ODTH8	ODT high time with Write command and BI	_8	6	-	t _{CK}	
t _{AONPD}	Asynchronous RTT turn-on delay (Power- I frozen)	Down with DLL	2	8.5	ns	
t _{AOFPD}	Asynchronous RTT turn-off delay (Power- Down with DLL frozen)		2	8.5	ns	
t _{AON}	RTT turn-on		-195	195	ps	7
t _{AOF}	RTT_Nom and RTT_WR turn-off time from reference	ODTLoff	0.3	0.7	t _{CK}	8
t _{ADC}	RTT dynamic change skew		0.3	0.7	t _{CK}	
t _{WLMRD}	First DQS/DQS# rising edge after write leve programmed	eling mode is	40	-	t _{CK}	3
t _{WLDQSEN}	DQS/DQS# delay after write leveling mode programmed	is	25	-	t _{CK}	3
t _{WLS}	Write leveling setup time from rising CK, CK# crossing to rising DQS, DQS# crossin	140	-	ps		
t _{WLH}	Write leveling hold time from rising DQS, D rising CK, CK# crossing	140	-	ps		
t _{WLO}	Write leveling output delay	0	7.5	ns		
t _{WLOE}	Write leveling output error		0	2	ns	
t _{RFC}	REF command to ACT or REF command ti	ime	110	-	ns	
t	Average periodic refresh interval	0°C to 85°C	-	7.8	μs	
•REFI		85°C to 95°C	-	3.9	μs	

Note 1. Actual value dependant upon measurement level.

Note 2. Commands requiring a locked DLL are: READ (and RAP) and synchronous ODT commands.

Note 3. The max values are system dependent. Note 4. WR as programmed in mode register.

Note 5. Value must be rounded-up to next higher integer value.

Note 6. There is no maximum cycle time limit besides the need to satisfy the refresh interval, tREFI.

- Note 7. For definition of RTT turn-on time tAON See "Timing Parameters".
- Note 8. For definition of RTT turn-off time tAOF See "Timing Parameters".
- Note 9. tWR is defined in ns, for calculation of tWRPDEN it is necessary to round up tWR / tCK to the next integer.
- Note 10. WR in clock cycles as programmed in MR0.
- Note 11. The maximum read postamble is bound by tDQSCK(min) plus tQSH(min) on the left side and tHZ(DQS)max on the right side. See "Clock to Data Strobe Relationship".
- Note 12. Output timing deratings are relative to the SDRAM input clock. When the device is operated with input clock jitter, this parameter needs to be derated by t.b.d.
- Note 13. Value is only valid for RON34.
- Note 14. Single ended signal parameter.
- Note 15. tREFI depends on TOPER.
- Note 16. tIS(base) and tIH(base) values are for 1V/ns CMD/ADD single-ended slew rate and 2V/ns CK, CK# differential slew rate. Note for DQ and DM signals, VREF(DC) = VRefDQ(DC). For input only pins except RESET#, VRef(DC) = VRefCA(DC). See "Address / Command Setup, Hold and Derating".
- Note 17. tDS (base) and tDH (base) values are for a single-ended 1 V/ns slew rate DQs and 2 V/ns slew rate differential DQS, DQS#; when DQ single-ended slew rate is 2V/ns, the DQS differential slew rate is 4V/ns. Note for DQ and DM signals, VREF(DC) = VRefDQ(DC). For input only pins except RESET#, VRef(DC) = VRefCA(DC). See "Data Setup, Hold and Slew Rate Derating"
- Note 18. Start of internal write transaction is defined as follows:
 - For BL8 (fixed by MRS and on- the-fly): Rising clock edge 4 clock cycles after WL.
 - For BC4 (on- the- fly): Rising clock edge 4 clock cycles after WL.
 - For BC4 (fixed by MRS): Rising clock edge 2 clock cycles after WL.
- Note 19. The maximum read preamble is bound by tLZ(DQS)min on the left side and tDQSCK(max) on the right side. See "Clock to Data Strobe Relationship".
- Note 20. CKE is allowed to be registered low while operations such as row activation, precharge, autoprecharge or refresh are in progress, but power-down IDD spec will not be applied until finishing those operations.
- Note 21. Although CKE is allowed to be registered LOW after a REFRESH command once tREFPDEN(min) is satisfied, there are cases where additional time such as tXPDLL(min) is also required. See "Power-Down clarifications-case 2".
- Note 22. Defined between end of MPR read burst and MRS which reloads MPR or disables MPR function.
- Note 23. One ZQCS command can effectively correct a minimum of 0.5 % (ZQ Correction) of RON and RTT impedance error within 64 nCK for all speed bins assuming the maximum sensitivities specified in the 'Output Driver Voltage and Temperature Sensitivity' and 'ODT Voltage and Temperature Sensitivity' tables. The appropriate interval between ZQCS commands can be determined from these tables and other application-specific parameters. One method for calculating the interval between ZQCS commands, given the temperature (Tdriftrate) and voltage (Vdriftrate) drift rates that the SDRAM is subject to in the application, is illustrated. The interval could be defined by the following formula:

ZQCorrection (TSens × Tdriftrate) + (VSens × Vdriftrate)

Where TSens = max(dRTTdT, dRONdTM) and VSens = max(dRTTdV, dRONdVM) define the SDRAM temperature and voltage sensitivities.

For example, if TSens = 1.5% / °C, VSens = 0.15% / mV, Tdriftrate = 1 °C / sec and Vdriftrate = 15 mV / sec, then the interval between ZQCS commands is calculated as:

$$\frac{0.5}{(1.5 \times 1) + (0.15 \times 15)} = 0.133_{\odot} \quad 128 \text{ms}$$

- Note 24. n = from 13 cycles to 50 cycles. This row defines 38 parameters.
- Note 25. tCH(abs) is the absolute instantaneous clock high pulse width, as measured from one rising edge to the following falling edge.
- Note 26. tCL(abs) is the absolute instantaneous clock low pulse width, as measured from one falling edge to the following rising edge.
- Note 27. The tIS(base) AC125 specifications are adjusted from the tIS(base) AC135 specification by adding an additional 75ps of derating to accommodate for the lower alternate threshold of 125 mV and another 10 ps to account for the earlier reference point [(135 mv 125 mV) / 1 V/ns].
- Note 28. Pulse width of a input signal is defined as the width between the first crossing of Vref(dc) and the consecutive crossing of Vref(dc).
- Note 29. tDQSL describes the instantaneous differential input low pulse width on DQS DQS#, as measured from one falling edge to the next consecutive rising edge.
- Note 30. tDQSH describes the instantaneous differential input high pulse width on DQS DQS#, as measured from one rising edge to the next consecutive falling edge.
- Note 31. tDQSH, act + tDQSL, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing parameter in the application.
- Note 32. tDQSH, act + tDSS, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing

parameter in the application. Note 33. The CL and CWL settings result in tCK requirements. When making a selection of tCK, both CL and CWL requirement settings need to be fulfilled

7 Reference Load for AC Timing and Output Slew Rate

The following figure represents the effective reference load of 25 ohms used in defining the relevant AC timing parameters of the device as well as output slew rate measurements.

It is not intended as a precise representation of any particular system environment or a depiction of the actual load presented by a production tester. System designers should use IBIS or other simulation tools to correlate the timing reference load to a system environment. Manufacturers correlate to their production test conditions, generally one or more coaxial transmission lines terminated at the tester electronics.

Figure 2 - Reference Load for AC Timings and Output Slew Rates

8 Package Outlines

Figure 3 reflects the current status of the outline dimensions of the DDR3 packages for 1Gbit component x16 configuration.

Figure 3 - 96-Ball FBGA Package 7.5x13x1.0 mm (max) Outline Drawing Information

Symbol	Dim	ension in	incn	Dimension in mm			
Symbol	Min	Nom	Max	Min	Nom	Max	
A			0.039			1.00	
A1	0.010		0.016	0.25		0.40	
A2			0.008			0.20	
D	0.291	0.295	0.299	7.40	7.50	7.60	
E	0.508	0.512	0.516	12.90	13.00	13.10	
D1		0.252			6.40		
E1		0.472			12.00		
F		0.126			3.20		
е		0.031			0.80		
b	0.016	0.018	0.020	0.40	0.45	0.50	
D2			0.081			2.05	

9 Product Type Nomenclature

For reference the UniIC SDRAM component nomenclature is enclosed in this chapter

Table 5 - DDR3 Memory Components

Field	Description	Values	Coding
1	UniIC Component Prefix	SCB	UniIC
2	Voltage	13	VDD, VDDQ=1.35V (1.283V ~ 1.45V)
3	DRAM Technology	н	DDR3
4	Density	1G	1 Gbit
5	Number of I/Os	16	X16
6	Product Variant	09	_
		А	First
	Dia Davisian	В	Second
/		С	Third
		D	Fourth
8	Package,	F	FBGA
0	Davar	_	Standard power product
9	Power	L	Low power product
		15H	CL–Trcd–Trp = 9-9-9
10	Speed Grade	13K	CL-Trcd-Trp =11-11-11
		11M	CL-Trcd-Trp =13-13-13
11		Blank	Commercial Temperature Range:0~95℃
11	remperature Kange	1	Industiral Temperature:-40~95°C

List of Figures

Figure 1 - Ball out for 64 Mb ×16 Components (FBGA-96)	6
Figure 2. Deference Load for AC Timings and Output Claw Dates	40
Figure 2 - Reference Load for AC Timings and Output Siew Rates	16
Figure 3 - 96-Ball FBGA Package 7.5x13x1.0 mm (max) Outline Drawing Information	17

List of Tables

Table 1 - Ordering Information for 1Gbit DDR3 Component	5	
Table 2 - Input / Output Signal Functional Description	7	
Table 3 - IDD Specification parameters and test conditions (VDD = 1.35V, TOPER = 0~85 °C)	9	
Table 4 - Electrical Characteristics and Recommended A.C. Operating Conditions (V _{DD} =1.35V,T _{OPER} =0~85°C)	. 11	
Table 5 - DDR3 Memory Components	. 18	

Edition 2021-06 Published by Xi'an UniIC Semiconductors CO., Ltd.

Xi'an: 4th Floor, Building A, No. 38 Gaoxin 6th Road, Xian High-tech Industries Development Zone Xi'an, Shaanxi 710075, P. R. China Tel: +86-29-88318000 Fax: +86-29-88453299

info@unisemicon.com

© UniIC 2021. All Rights Reserved.

Legal Disclaimer

THE INFORMATION GIVEN IN THIS INTERNET DATA SHEET SHALL IN NO EVENT BE REGARDED AS A GUARANTEE OF CONDITIONS OR CHARACTERISTICS. WITH RESPECT TO ANY EXAMPLES OR HINTS GIVEN HEREIN, ANY TYPICAL VALUES STATED HEREIN AND/OR ANY INFORMATION REGARDING THE APPLICATION OF THE DEVICE, UNIIC HEREBY DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND, INCLUDING WITHOUT LIMITATION WARRANTIES OF NON-INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OF ANY THIRD PARTY.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest UniIC Office.

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest UniIC Office.

UniIC Components may only be used in life-support devices or systems with the express written approval of UniIC, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

www.unisemicon.com